Glenammer Engineering Ltd

Expertise In Particle Analysis For Over 20 Years Manufacturing High Quality Testing Equipment In The UK

62 Viewfield Road, Ayr, United Kingdom KA88HH

+44 (0) 1292 291 444

sales@glenammer.com
At Glenammer Engineering's manufacturing facility based in the West Coast of Scotland, our dedicated team continue to develop and produce the finest test sieves to suit the exact requirements of our customers.

Our quality product, attention to detail and competitive prices have led to an increase in demand for our test sieves in the UK and worldwide. We believe that working in partnership with our customers is very important. Therefore, at their request, we maintain a large stock which enables us to provide an efficient, fast turnaround of all customer orders.

OUR HISTORY

Glenammer Engineering Limited was formed in June 1998 by Mr Allen Matthews with an innovative idea of producing better quality laboratory sieves made exclusively from stainless steel. At that time most sieves were made from brass, which is a weaker and less environmentally friendly material than stainless steel.

At the very beginning, the founder Mr Allen Matthews started his business from a small workshop in his garage. Two years later, the passion and dedication started to pay off. Glenammer was winning more and more customers with its good reputation in the market as "supplying the best value sieves that money could buy." Glenammer did not advertise so our products were like golden nuggets waiting to be found and gradually customers did find us. We grew rapidly, in 2005 we moved to our first factory. After 9 years further expanding, we needed a larger space for our stock room and production line. We now occupy a 7000 sq. ft. factory, which is a significant upgrade on the workshop where we first started.

We keep our eyes open to good ideas which benefit our product. A further demonstration of this was when we looked at the way labels were fixed to the sieves. We used innovation and created a new method of labelling. We started chemically etching labels in 2008 with the benefit of no rivets, no trapping point and an easy clean product. In 2015, we discovered a better labelling method, laser marking - which cut the frame surface and preserved the label forever. In 2017, a 3D laser marking machine was invested in, which provides much bigger and clearer labels.

One of our most asked questions is "where does the name Glenammer come from? Because it is not a name we have heard before." It was born out of a desire to have a company name that identified our heritage to be Scottish. The owner's home has a bridge called Glenammer Bridge, so we took that name. Therefore the name represents the fact that Glenammer Engineering has a great desire to be "the bridge" between Scotland and the rest of the world. From a Scottish local business to an international player, there is over 60% of its annual turnover going to export. So far we have business partners in 71 different countries, there are 124 more in the world and it is our ambition to export to them all.

Brief History Timeline

- **1998**: First Launched
 - Mr Allen Matthews started Glenammer Engineering Ltd in his “double garage at home”

- **2005-2006**: Move to New Factory
 - The business expanded and Glenammer moved to its first factory
 - Started In-House Punching

- **2007**: New Premises
 - UKAS Accreditation
 - We became the first company in the UK to be accredited by UKAS for calibrating test sieves

- **2008**: New Website Launched
 - New website, E-commerce shop and blog went live

- **2009**: Exhibited at IPowTech Germany

- **2010**: New Managing Director
 - Allen retired, his daughter Mrs Claire Walls was appointed as new MD and took over the business

- **2011**: New Production Line Integrated
 - We invested over £500,000 to upgrade a production line. Six major new automated machinery have been successfully installed into our factory

- **2013**: New Premises
 - Moved to a much larger factory that is 7000 sq. ft. to provide space for our stock

- **2014**: New Production Line Integrated
 - We invested over £500,000 to upgrade a production line. Six major new automated machinery have been successfully installed into our factory

- **2016**: New Website Launched
 - New website, E-commerce shop and blog went live

- **2017**: Upgraded to 3D Laser Marking Technology
 - Visited China Canton Fair

- **2018**: 20th Anniversary
 - After 20 years of dedication, Glenammer is now serving customers worldwide from 71 different countries. Having built a great reputation globally, we are enthusiastic about the next phase of development.

- **2019**: 20th Anniversary
Test Sieve Manufacturing Process

Glenammer Engineering Limited is committed to supplying sieves that reflect our very real passion for our products. We always share that passion with our suppliers and customers. We are proud of our global reputation that our sieves are recognised to be the the best value and quality money can buy.

When selecting components, Glenammer engineers endeavour to choose the best material available in the market and also take environmental sustainability into consideration. Therefore, we only make stainless steel test sieves as they are the most suitable material for particle analysis and last much longer than other material sieves.

Our in-house test sieve manufacturing process contains over 10 different procedures, Glenammer experienced engineers ensure each procedure is completed precisely. We are always striving for excellence and innovation. These engineers are continuously developing new manufacturing methods and implementing more advanced equipment into our production line.
Product Feature

- **Gap Sealant**: 100μm and below are sealed to ensure a smooth waterproof join between mesh and frame.
- **Quality Mesh**: Stainless Steel Grade 316, fine mesh is evenly tensioned.
- **Frame**: Highly Polished Stainless-Steel Frame Grade 304.
- **Serial Number**: Unique traceable serial number.
- **Package**: Test sieves are carefully packaged along with a Certificate of Conformity/Record Card.
- **Laser Label**: 3D laser marking technology, provides clear and long-lasting identification.

- **Safety Edge**: No sharp edges to trap unwanted material or cause safety hazards.

Label

- No rivets used for labelling and internal tim polished for easy cleaning.

Mesh

- Superior manufacturing methods ensure no solder within the sieving area.

Sealant

- Stringent quality checks to ensure mesh is flat within the sieve.
Woven Wire Test Sieve

Glenammer Woven Wire Sieves are one of the most widely used type of test sieves, the production team use the finest mesh in the world to make the best quality test sieves.

Glenammer woven wire sieves are manufactured to the most stringent engineering standards (BS 410/ISO 3310 part 1 and ASTM E11:17).

Woven wire sieves are used in various testing environments including petroleum, pharmaceutical, sand, soil, paint, chemical raw feed, food, coal, agricultural products, seeds, plants, transfer material, metal powders, fertilizers, glass, building materials, resin and so on.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Woven Wire Mesh</td>
</tr>
<tr>
<td>Sieve Diameter</td>
<td>100 / 150 / 200 / 300 / 315 / 350 / 400 / 450 mm</td>
</tr>
<tr>
<td></td>
<td>8 / 12 inches</td>
</tr>
<tr>
<td>Aperture Size</td>
<td>From 20 μm-125 mm</td>
</tr>
</tbody>
</table>

Standard: BS 410/ISO 3310 part 1

Standard: ASTM E11:17
Perforated Plate Test Sieves

Glenammer perforated plate sieves are produced in house utilizing a CNC Punch Press. This means the quality control team are able to ensure all of the sieves are manufactured with the exact apertures every time.

Perforated plate sieves range from 125mm to 4mm in square hole and 125mm to 1mm in round hole. They are manufactured to comply with BS410/ISO 3310 part 2.

Perforated plate sieves can be used for aggregates, chemicals, coffee, construction materials, fertilizers, fillers, flours, grains, metals powders, minerals, nuts, plastics, sand, seeds, soils, washing powder.

Coffee Bean Sieves

Coffee bean sieves are used to grade coffee beans and they are manufactured with round hole perforated plate and a stainless steel frame.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Perforated Plate Round Holes</td>
</tr>
<tr>
<td>Sieve Diameter</td>
<td>200 mm</td>
</tr>
<tr>
<td>Aperture Size</td>
<td>3/64 - 20/64ths</td>
</tr>
<tr>
<td>Sieve Height</td>
<td>Full height 50 mm</td>
</tr>
</tbody>
</table>

Grain Sieves

Glenammer grain sieves are specifically designed in a 200mm diameter frame with slotted stainless steel perforated plate which can be used for grains, cereals and tobacco sieving. Manufactured to Standard ISO 5223.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Perforated Plate Slotted Holes</td>
</tr>
<tr>
<td>Sieve Diameter</td>
<td>200 mm</td>
</tr>
<tr>
<td>Aperture Size</td>
<td>3/64 - 20/64ths</td>
</tr>
<tr>
<td>Sieve Height</td>
<td>Full height 50 mm</td>
</tr>
</tbody>
</table>
Grid Sieves

Grid sieves are used for determining particle flakiness against the index of aggregate coarseness and are suitable for hand sieving. They are manufactured using a powder coated steel frame and stainless steel rods. They comply fully with EN9333-3:2012.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Powder Coated Steel Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Rods</td>
</tr>
<tr>
<td>Sieve Size</td>
<td>325mm x 325mm</td>
</tr>
<tr>
<td>Sieve Height</td>
<td>Full height 75 mm</td>
</tr>
<tr>
<td>Available Sizes</td>
<td>2.50 3.15 4.00 5.00 6.30 8.00 10.00</td>
</tr>
<tr>
<td></td>
<td>12.5 16.0 20.0 25.0 31.5 40.0 50.0</td>
</tr>
</tbody>
</table>

Air Jet Test Sieves

Air jet sieves are designed for testing the particle size distribution of dry, powdery materials. They are manufactured to half height and can be fitted in most air jet sieve machines.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Woven Wire Mesh</td>
</tr>
<tr>
<td>Sieve Diameter</td>
<td>200 mm/ 300mm/12’/ 8’</td>
</tr>
<tr>
<td>Aperture Size</td>
<td>20 µm-3.55 mm</td>
</tr>
<tr>
<td>Sieve Height</td>
<td>200 x 25 mm; 8” x 1”; 300 x 38mm;12” x 1.5”;</td>
</tr>
</tbody>
</table>

Wet Washing Sieves

Glenammer wet washing sieves are manufactured with extra-deep frame specifically for wet testing, which makes it possible to separate fine samples with liquid and avoid particles sticking to each other.

Specification

<table>
<thead>
<tr>
<th>Sieve Frame Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Screen</td>
<td>Stainless Steel Woven Wire Mesh</td>
</tr>
<tr>
<td>Sieve Diameter</td>
<td>200 mm/ 300mm/12’/ 8’</td>
</tr>
<tr>
<td>Aperture Size</td>
<td>20 µm-3.55 mm</td>
</tr>
<tr>
<td>Sieve Height</td>
<td>200mm & 8” x 100mm 300mm & 12” x 150mm</td>
</tr>
<tr>
<td></td>
<td>200mm & 8” x 200mm 300mm & 12” x 225mm</td>
</tr>
<tr>
<td></td>
<td>300mm & 12” x 300mm</td>
</tr>
</tbody>
</table>
Acessories

Glenammer supply durable and affordable sieving accessories, which are designed to assist sieving procedures.

Lids and Receivers (also known as "cover" and "pan") are widely used in particle analysis, especially with sieve shakers. Receivers are used for collecting the final samples at the very bottom of test sieves. Lids are placed on the top to keep the samples inside the sieve stack.

Intermediate Receivers can be placed between test sieves so that users can complete two or more different tests while only operating the sieve shaker once.

Wet Washing Lids and Receivers are designed for particle analysis when liquid is involved. Both of our lids and receivers have adapters installed to let the liquid flow through.

Sieve Brushes - Glenammer supply double ended nylon brushes and double ended brass/nylon brushes. The nylon bristle paint brush is recommended to use for test sieve mesh cleaning.

Rubber Gaskets are used on the bottom of individual test sieve. They prevent test sieves from wobbling and provide a good sealant between two test sieves.

Specification

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lid Material</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Receiver Material</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Available Diameter</td>
<td>100 / 150 / 200 / 300 / 315 / 350 / 400 / 450 mm 8" / 12"</td>
</tr>
<tr>
<td>Available Brush Type</td>
<td>Double Ended Nylon & Double Ended Brass/Nylon</td>
</tr>
</tbody>
</table>

Soil Testing Sieve Set

This set is designed to assist soil laboratory analysis. The set is made of 14 x 200 mm/8" diameter sieves with suitable aperture sizes and accessories.

To help with the soil testing projects, we have designed this set with the following aperture sizes: 75.00 mm (3 in), 37.50 mm (1 ½ in), 9.50 mm (3/8 in), 6.30 mm (1/4 in), 4.75 mm (No.4), 2.00 mm (No.10), 850 microns (No.20), 600 microns (No.30), 425 microns (No.40), 300 microns (No.50), 250 microns (No.60), 150 microns (No.100), 106 microns (No.140), 75 microns (No.200), lid, receiver and a brush.
Sieve Shakers

Glenammer Engineering’s range of Sieve Shakers is constantly evolving as Glenammer manufactures shakers to order and also to customer’s particular requirements. All systems are 220/240 volt single phase. Shakers are durable and easy to operate. Two sets of replaceable clamping components come with the equipment providing quick release for an efficient operation.

Three Shaker Models Comparison

<table>
<thead>
<tr>
<th>Model</th>
<th>SQ Analogue</th>
<th>SQ Digital</th>
<th>SQ Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Max. 850mm high nested sieves plus lid and receiver (approx. 10 of 200mm or 8 of 300mm)</td>
<td>Max. 850mm high nested sieves plus lid and receiver (approx. 10 of 200mm or 8 of 300mm)</td>
<td>Max. 850mm high nested sieves plus lid and receiver (approx. 10 of 200mm or 8 of 300mm)</td>
</tr>
<tr>
<td>Suitable for dry & wet sieving</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Amplitude</td>
<td>0-3mm non-adjustable</td>
<td>0-3mm non-adjustable</td>
<td>0-3mm non-adjustable</td>
</tr>
<tr>
<td>Sieving Motion</td>
<td>Vibratory</td>
<td>Vibratory</td>
<td>Vibratory</td>
</tr>
<tr>
<td>Digital Display</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Timing Method/ Range</td>
<td>0min-30min</td>
<td>00:00-99:59</td>
<td>00:00-99:59</td>
</tr>
<tr>
<td>Speed Adjustment</td>
<td>No</td>
<td>No</td>
<td>Yes, range from 0-10 grade</td>
</tr>
<tr>
<td>Available Diameter</td>
<td>200mm,300mm,315mm,450mm</td>
<td>200mm,300mm,315mm,450mm</td>
<td>200mm,300mm,315mm,450mm</td>
</tr>
</tbody>
</table>

Application
- Durable and economic choice for sample separation
- An efficient replacement for hand sieving
- Maintenance free
- Digital control panel for accurate testing
- Advanced timing control
- Shaking speed adjustable for various materials and experiments
- Efficient and accurate time control

Specification

<table>
<thead>
<tr>
<th>Max. Sample Weight</th>
<th>4500g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Action</td>
<td>Approx. Up To 350 Oscillations Per Minute</td>
</tr>
<tr>
<td>Net Dimension</td>
<td>280mm x 150mm x 280mm</td>
</tr>
<tr>
<td>Net Weight</td>
<td>22Kg</td>
</tr>
<tr>
<td>Electricity Supply</td>
<td>220/240 Volt, 1ph, 60 Hz</td>
</tr>
<tr>
<td>Input Power</td>
<td>0.045kw, Current 0.20amps</td>
</tr>
</tbody>
</table>
Hosokawa Air Jet Sieve

The Mikro Air Jet Sieve™ — Model MAJS-x is a highly accurate and reliable particle size analyser designed for determining the particle size distribution of dry powder ranging from 20 µm to 4,750 µm.

Advancement

-- Integrated analysis computer with touch screen controls
-- User friendly software with step by step instructions
-- Automatic pressure differential gauge built-in
-- Automatic data recording and storage with network capability
-- Ergonomic & user-friendly design

Features

-- Suitable for Chemicals, Minerals, Pharmaceuticals, Food, Plastics & Cosmetic materials
-- Determines particle size for dry powders from 20 µm to 4,750 µm
-- Output graphs available in linear, logarithmic, and Rosin-Rammler formats
-- Capable of calculating particle size points at 0.01 to 99.99% using the Rosin-Rammler Law
-- Economic solution to particle size analysis
-- Pneumatic sieving deagglomerates the sample while continuously cleaning test sieve
-- Samples 10 to 100 grams/cycle
-- Highly accurate & reliable particle size analysis

Specification

<table>
<thead>
<tr>
<th>Range</th>
<th>20 µm to 4,750 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive / sieving motion</td>
<td>dispersion by air jet</td>
</tr>
<tr>
<td>Max. number of sieves</td>
<td>1</td>
</tr>
<tr>
<td>Electrical supply</td>
<td>100-230 volt, 50/60 Hz power</td>
</tr>
<tr>
<td>Net Dimension</td>
<td>419.1mm x 266.7mm x 177.8mm</td>
</tr>
<tr>
<td>Net Weight</td>
<td>11.8 Kg</td>
</tr>
<tr>
<td>Speed</td>
<td>10 to 100 grams/cycle</td>
</tr>
<tr>
<td>Screen Control</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Capable of calculating particle size points at 0.01 to 99.99% using the Rosin-Rammler Law</td>
</tr>
<tr>
<td>Output</td>
<td>graphs linear, logarithmic, and Rosin-Rammler formats</td>
</tr>
</tbody>
</table>

Glenammer Jaw Crusher

Glenammer Jaw Crusher is designed for batch and continuous pre-crushing of medium, medium to hard, hard, brittle and tough materials to be followed by fine grinding.

Specification

<table>
<thead>
<tr>
<th>Jaw Inlet</th>
<th>20 µm to 4,750 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive / sieving motion</td>
<td>dispersion by air jet</td>
</tr>
<tr>
<td>Max. number of sieves</td>
<td>1</td>
</tr>
<tr>
<td>Electrical supply</td>
<td>100-230 volt, 50/60 Hz power</td>
</tr>
<tr>
<td>Net Dimension</td>
<td>419.1mm x 266.7mm x 177.8mm</td>
</tr>
<tr>
<td>Net Weight</td>
<td>11.8 Kg</td>
</tr>
<tr>
<td>Speed</td>
<td>10 to 100 grams/cycle</td>
</tr>
<tr>
<td>Screen Control</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Capable of calculating particle size points at 0.01 to 99.99% using the Rosin-Rammler Law</td>
</tr>
<tr>
<td>Output</td>
<td>graphs linear, logarithmic, and Rosin-Rammler formats</td>
</tr>
</tbody>
</table>

Features

-- Better crushing performance due to 3000 Watt (strong 3 phase motor)
-- Easy and quick access to the crushing chamber (no tool required)
-- Stepless adjustment of gap setting (no tool required)
-- CE certified
-- Removable infeed hopper with safety baffles or batch loader
-- High precision solid steel underframe
-- Solid and spacious 20 litre sample collector
-- Motor protection switch with start/stop
-- End-fineness approx. 2 mm
-- Easy exchange of jaw plates and side liners
-- 3 different kind of interchangeable jaw plates
Standard Range of Apertures

International Standard Sieve Series

<table>
<thead>
<tr>
<th>B.S. 410 / I.S.O. 3310 parts 1</th>
<th>mm</th>
<th>μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven Wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>9.5</td>
<td>900</td>
</tr>
<tr>
<td>112</td>
<td>9</td>
<td>850</td>
</tr>
<tr>
<td>106</td>
<td>8</td>
<td>800</td>
</tr>
<tr>
<td>100</td>
<td>7.1</td>
<td>710</td>
</tr>
<tr>
<td>90</td>
<td>6.7</td>
<td>630</td>
</tr>
<tr>
<td>80</td>
<td>6.3</td>
<td>600</td>
</tr>
<tr>
<td>75</td>
<td>5.6</td>
<td>560</td>
</tr>
<tr>
<td>71</td>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>63</td>
<td>4.75</td>
<td>450</td>
</tr>
<tr>
<td>56</td>
<td>4.5</td>
<td>425</td>
</tr>
<tr>
<td>53</td>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>50</td>
<td>3.55</td>
<td>355</td>
</tr>
<tr>
<td>45</td>
<td>3.35</td>
<td>315</td>
</tr>
<tr>
<td>40</td>
<td>3.15</td>
<td>300</td>
</tr>
<tr>
<td>37.5</td>
<td>2.8</td>
<td>280</td>
</tr>
<tr>
<td>35.5</td>
<td>2.5</td>
<td>250</td>
</tr>
<tr>
<td>31.5</td>
<td>2.36</td>
<td>224</td>
</tr>
<tr>
<td>28</td>
<td>2.24</td>
<td>212</td>
</tr>
<tr>
<td>26.5</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>1.8</td>
<td>180</td>
</tr>
<tr>
<td>22.4</td>
<td>1.7</td>
<td>160</td>
</tr>
<tr>
<td>20</td>
<td>1.6</td>
<td>150</td>
</tr>
<tr>
<td>19</td>
<td>1.4</td>
<td>140</td>
</tr>
<tr>
<td>18</td>
<td>1.25</td>
<td>125</td>
</tr>
<tr>
<td>16</td>
<td>1.18</td>
<td>112</td>
</tr>
<tr>
<td>14</td>
<td>1.12</td>
<td>106</td>
</tr>
<tr>
<td>13.2</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

American Standard Sieve Series

<table>
<thead>
<tr>
<th>B.S. 410 / I.S.O. 3310 parts 2</th>
<th>mm</th>
<th>μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforated Plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round & Square Hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>37.5</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ASTM E11:17

<table>
<thead>
<tr>
<th>mm</th>
<th>Woven Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altern.</td>
<td>μm</td>
</tr>
<tr>
<td>125</td>
<td>5.00 in</td>
</tr>
<tr>
<td>112</td>
<td>4.24 in</td>
</tr>
<tr>
<td>106</td>
<td>4 in</td>
</tr>
<tr>
<td>100</td>
<td>3 ½ in</td>
</tr>
<tr>
<td>90</td>
<td>3 in</td>
</tr>
<tr>
<td>80</td>
<td>2 ½ in</td>
</tr>
<tr>
<td>75</td>
<td>2 ⅛ in</td>
</tr>
<tr>
<td>71</td>
<td>2 in</td>
</tr>
<tr>
<td>63</td>
<td>1 ¾ in</td>
</tr>
<tr>
<td>56</td>
<td>1 ⅛ in</td>
</tr>
<tr>
<td>53</td>
<td>1 ⅛ in</td>
</tr>
<tr>
<td>50</td>
<td>1 in</td>
</tr>
<tr>
<td>45</td>
<td>7/8 in</td>
</tr>
<tr>
<td>40</td>
<td>7/8 in</td>
</tr>
<tr>
<td>37.5</td>
<td>3/4 in</td>
</tr>
<tr>
<td>35.5</td>
<td>5/8 in</td>
</tr>
<tr>
<td>31.5</td>
<td>0.530 in</td>
</tr>
<tr>
<td>28</td>
<td>⅛ in</td>
</tr>
<tr>
<td>26.5</td>
<td>⅛ in</td>
</tr>
<tr>
<td>25</td>
<td>⅜ in</td>
</tr>
<tr>
<td>22.4</td>
<td>5/16 in</td>
</tr>
<tr>
<td>20</td>
<td>0.256 in</td>
</tr>
<tr>
<td>19</td>
<td>1/4 in</td>
</tr>
<tr>
<td>18</td>
<td>No. 4</td>
</tr>
<tr>
<td>16</td>
<td>No. 5</td>
</tr>
<tr>
<td>14</td>
<td>3.35</td>
</tr>
<tr>
<td>13.2</td>
<td>2.8</td>
</tr>
<tr>
<td>12.5</td>
<td>2</td>
</tr>
<tr>
<td>11.2</td>
<td>1.7</td>
</tr>
<tr>
<td>10.0</td>
<td>1.4</td>
</tr>
<tr>
<td>9.5</td>
<td>1.18</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>